Privacy-enhanced (&Trust aware) Authz in Constained Environment.
Agenda

Constrained Environments and IoT
Privacy in IoT
What are Credentials, what is authn, authz?
Reasonong about Credentials
How does that fit in IoT ?
Privacy-Enhanced Tokens
Conclusions / Summary
Agenda

Constrained Environments and IoT
ACE Charter

Standardized solution for authorization delegation

- use CoAP and leverage DTLS security where possible
- employ additional less-constrained devices in order to relieve the constrained nodes
- existing authentication and authorization protocols are used and re-applied ... restricting the options within each of the specifications
- operate across multiple domains
- intermittent connectivity of resource server
Constrained Device?

- Flash Memory say, ~ 512KB, RAM, say ~32KB
- Energy constraints
- No user interface/unattended
- Nodes must sleep often
- LLN: low power, lossy NW
 - ~ 100kb/sec, high loss, high variability
 - Physical layer may be constrained to ~100 bytes/message
CoAP

The Constrained Application Protocol
- implements HTTP's REST model
 - GET, PUT, DELETE, POST; media type model
 - while avoiding most of the complexities of HTTP

Simple protocol, datagram only (UDP, DTLS)
- 4-byte header, compact yet simple options encoding
 - adds "observe", a lean notification architecture

GET coap://temp1.25b006.floor1.example.com/temperature
PUT coap://blue-lights.bu036.floor1.example.com/intensity
GET coap://25b006.floor1.example.com/.well-known/core
 <temp>: n="TemperatureC" ,<light>:ct=41;n="LightLux"
How to support explicit, dynamic authorization?
ACE Use Cases

Client

PUT "green" /n1

Authorization Server

Decision

Server (constrained)
ACE Use Cases

PUT “27” /param3

Client

Authorization Server

Servers (constrained)

Decision
ACE Use Cases

Authorization Server

Client

GET /bloodpressure

PUT "2.5mg" /sedative

Servers (constrained)
Privacy in IoT
IoT’s sensor data is

- high in quantity, quality, sensitivity
- sensitive inferences that can be drawn
- identifiability is rather likely

IoT data should be regarded & treated as personal data

… huge challenges will be faced by IoT developers, authorities, and individuals
IoT sensor data

Will disclose

• location information
• Relation between people
• Preferences and routine activities

To skript kiddies!
Big Data

Data is an asset

- it generates value for the data controller (processor)

… instead of instructing a computer what do, throw data at the problem and tell the computer to figure it out

- Kenneth Cukier, editor of “The Economist”

Open data is data that can be freely used, reused and redistributed by anyone

- subject only, at most, to the requirement to attribute and sharealike
 - opendefinition.org
“Barriers against the free flow of data are, in effect, barriers against trade”

- Carl Bildt, former prime minister of Sweden, chair of Global Commission on Internet Governance

“DP officers have lost contact with reality”

- NN
Fitting Policies in IoT-A

I need a nail!!

This is my hammer
I want rerum to enforce <these policies>

You can use me

Destroy the hammer after 5 days
Don't give this hammer to UniDa

Privacy Policies are SW Artefacts
Associated to the Virtual Entity belonging to a Data Subject

When taking decision bout using the associated Data or Service, the policy is enforced

Who decides the policies?
The Data Subject
Pseudonyms are useful

- We require different layers of pseudonyms
 - At least one for “cloud”, one for wireless NWs

- Authorized entities must be able to
 - accept (somehow) pseudonyms
 - without explicit communication to an authority

- Pseudonyms must be compatible with key management
Agenda

What are Credentials, What is authn, authz?
- Well-known definitions
Well-known definitions: Authentication

RFC2828 Internet Security Glossary, 2000

The process of verifying (i.e., establish the truth of) an identity claimed by or for a system entity consists of two steps:

1. Identification step: Presenting an identifier to the security system
 - Identification: An act or process that presents an identifier to a system so that the system can recognize a system entity and distinguish it from other entities
 - Identifiers should be assigned carefully, because authenticated identities are the basis for other security services, such as access control

2. Verification step: Presenting or generating authentication information that corroborates the binding between the entity and the identifier.
IdP (say: SAML)

I am Alice

I trust the IdP

Convince me
Identification is often first step of a transaction

Makes sense in an organizational environment ... but

- People have several different names (or nicknames)
 - used in different contexts (students card; Club ID, drivers lic.)
- All transactions from all different contexts are linkable
 - The SAML IdP knows quite a bit of yourself
- Not reasonable to show all attributes on each transaction
Identity (Partial Identity): Set of attributes related to an entity in a certain context

- languages
- office phone nr.
- skills
- credit card nr
- home address
- hobbies
- mobile phone
- nickname
- club-id
- home phone
- health status
- health insurance
- blood values

marital status
full name
birth date
Bad definitions: Authentication

RFC2828 Internet Security Glossary, 2000

The process of verifying (i.e., establish the truth of) an identity claimed by or for a system entity

Consists of two steps:
1. Identification step: Presenting an identifier to the security system
 • Identification: An act or process that presents an identifier to a system so that the system can recognize a system entity and distinguish it from other entities
 • Identifiers should be assigned carefully, because authenticated identities are the basis for other security services, such as access control

2. Verification step: Presenting or generating authentication information that corroborates the binding between the entity and the identifier
Well-known definitions: Credential

The typical answer: It is either

1. Something you have
 - Security tokens
 - Smart cards
 - Money (is *that* a credential?)

2. Something you are
 - Biometrics
 - Signature dynamics
 - Keyboard dynamics
 - Voice print

3. Something you know
 - Passwords
 - Passphrases
 - Shared secrets (e.g. mother's maiden name)
 - How to solve a (set of) problems (puzzles)
Bad definitions: Credential

The typical answer: It is either

1. Something you have
 - Security tokens
 - Smart cards
 - Money (is that a credential?)

2. Something you are
 - Biometrics
 - Signature dynamics
 - Keyboard dynamics
 - Voice print

3. Something you know
 - Passwords
 - Passphrases
 - Shared secrets (e.g. mother's maiden name)
 - How to solve a (set of) problems (puzzles)

Too complex:
- We want to reason about credentials
- In a simple and coherent way
Bad usage: Crypto

How expensive is crypto

Could you encrypt (in IoT) 3 bits using 3 bits?

- No: padding
- No: TLS, DTLS
- No: randomization is necessary
- No: flags
Reasoning about Credentials
What are Credentials?
How do you reason about them & policies?
My Definitions

Credential:

Is a claim endorsed by *somebody*

- That binds an *attribute* *(or predicate on attributes)* to a *(set of) problems*

Examples:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Credential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Providing the correct password or PIN</td>
<td>PW DB</td>
</tr>
<tr>
<td>Responding a “public key” – based challenge whose solution is verifiable using the public key</td>
<td>PKI Cert</td>
</tr>
<tr>
<td>Providing money</td>
<td>Bank Note</td>
</tr>
<tr>
<td>Having a face that matches a certain photo</td>
<td>Passport / Univ ID</td>
</tr>
<tr>
<td>ZKP</td>
<td>ZKP Certs</td>
</tr>
</tbody>
</table>
My Definitions

Credentials may be revoked in several ways,

- for instance money gets immediately revoked (or changes the “subject”) as soon as it is used

- **Problems** and **credentials** can be used to construct **secure channels**
 - which provide some security goals,
 - like authenticity or integrity, non-repudiation, etc
 - to one or both of the communication partners while
 - assuring that the other partner has some attributes
What is a credential?

Is *this* a credential?
Ali Baba is the only one who can open the door

Peggy wants to prove that she is Ali Baba

Peggy randomly takes either path A or B, while Victor waits outside. Victor chooses an exit path and Peggy reliably appears at the exit Victor names.
Attribute-Based „Authentication“ / Authorization

I am authorized

I need pred(attributes)

I trust the <AttP-list>

Convince me

AttPs
My Definitions

Attributes:
may be seen as pairs: attribute type and value
but may contain other “fields” for “admin domain” / “context” / “validity”

I tend to think of values as ordered, say in a lattice
Protection of user's privacy

- unlinkability (multi-use)
- using/combining multiple credentials
- selective disclosure of credentials (or attributes)
- predicated over attributes

Strong authentication

- unforgeability of presentation tokens
 - Nobody should not be able to show a token for a credential that she never obtained
Simple Example

ACL

Bill, read
Steve, read
John, read/write

service

resource

request

response

client
more complex Example

ACL
Bill, read audit, read admin, read/write

local policy
HR can say who is audit, admin

service

resource

request

response

certificate
Peter is audit (signed, HR)

Peter
Even more complex Example

Local Policy:
- HR can say who is audit, who’s whose boss

Certificate:
- Peter is audit (signed, HR)

ACL:
- Bill, read admin, read/write audit, read, if boss says so

Service:
- request
- response

Resource:
- Peter
- certificate (signed, Bob)
- certificate (signed, HR)

Peter can read it

Bob is Peter’s boss (signed, HR)
Composition

\[
\begin{align*}
\text{Composition} & \quad \text{Composition} \\
A \rightarrow B & \quad A \rightarrow B \\
A \cdot \overset{c}{\rightarrow} B & \quad \text{PW} \\
A \cdot \overset{c}{\rightarrow} B & \quad A \cdot \overset{c}{\rightarrow} B \\
\text{Composition} & \quad \text{Composition} \\
A \rightarrow \text{SC} & \quad B \rightarrow \text{SC} \\
A \cdot \overset{c}{\rightarrow} B & \quad A \cdot \overset{c}{\rightarrow} B
\end{align*}
\]
Aut: something like the RSA token or the Gauthenticator
Q: How to create “multi-domain” Aut and bind them dynamically?
How to reason about 2-level authn?
Privacy-Enhanced Tokens
Goals

In some cases Privacy is not an issue
In some cases, Client gets one response per request
• in others, Client subscribes to a stream
In some cases DoS resilience only under stress…
One solution possibly does not fit all

The Key Material allows Client and Server to …

• generate Tokens & keys, verify Tokens

… Many ways of constructing & using tokens/keys

• As one-time-pads

• For DTLS, AES/MACs

![Diagram](attachment:diagram.png)
A Low-Cost Solution

Use Pseudo-Random Generators

An attacker may not distinguish if a (long) bit stream
• is purely random
• has been generated by a Pseudo-Random Generator $G(k)$
 • where k is a (“small”: 128, 256 bits) random key

Let $G(k)$ be written as an array (matrix) of seemingly random bits:

\[
\begin{array}{cccc}
 r_{1,1} & r_{2,1} & r_{3,1} \\
 r_{1,2} & r_{2,2} & r_{3,2} \\
 r_{1,3} & r_{2,3} & r_{3,3} \\
 r_{1,4} & r_{2,4} & r_{3,4} \\
 r_{1,5} & r_{2,5} & r_{3,5} \\
\end{array}
\]
A Low-Cost Solution

Not only generate Tokens T1, T2 … but also …

- Verification Keys ("Proof of Possession"): VerifK1 VerifK2
- Pre-Shared Keys (for DTLS, if required): PSK1 PSK2
- Integrity Keys: IntK1 IntK2
- Confidentiality Keys (for encryption): ConfK1 ConfK2

Use the long pseudo-random stream as a set of “Tokens and keys”

<table>
<thead>
<tr>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VerifK_1</td>
<td>VerifK_2</td>
<td>VerifK_3</td>
</tr>
<tr>
<td>PSK_1</td>
<td>PSK_2</td>
<td>PSK_3</td>
</tr>
<tr>
<td>IntK_1</td>
<td>IntK_2</td>
<td>IntK_3</td>
</tr>
<tr>
<td>ConfK_1</td>
<td>ConfK_2</td>
<td>ConfK_3</td>
</tr>
</tbody>
</table>
A Low-Cost Solution

Propose to Use ChaCha20

… (or ChaCha7?) as a pseudo-random generator

Use One-Time Pads for Confidentiality
• No need for padding
• Small message sizes

Open for further discussion
• Integrity
 • Propose: publish hashes (not trivial)
Why ChaCha20 (or ChaCha7)?

Better security, better performance, saves NW bandwidth

Better security

- ChaCha20 is very simple
 - even a completely naive implementation will be secure
- immune to padding-oracle attacks
 - which affect CBC mode as used in TLS
- immune to timing attacks

Better performance on mobile and wearable devices

- AES-128-GCM, AES-NI disabled: 131 MB/s
- ChaCha20+Poly1305, -march=native: 560 MB/s

Saves network bandwidth

- Poly1305 (16 bytes) vs HMAC-SHA1 (20 bytes)
Trustin g S ensors and IoT S ervices
Trust Management (?)

- Trust of observers?
- Aggregation?
- Assurance via Altcoins (?)

Diagram:
- **User** queries the **Service**.
- **Service** provides **Trust-credentials** and **trust-rating** to the **Reputation Engine**.
- **Observer** sends **trust-rating** to the **Service**.
- **Service** sends **Trust-credentials** to the **Reputation Engine**.
Conclusions / Summary
Conclusions

Need to reason about certificates and policies
 • … different types of certs, for different purposes

Need to reason about composability

Trust based on <some kind of> certification (certificates)
Summary / Conclusions

I like to see credentials as assertions produced/endorsed/written by somebody (with some attributes) that bind

- sets of problems with
- attributes

Moreover entities have “local policies”

- that say who is able to “say” what types of assertions about what type of people. The author of the credentials may be “authenticated” via attributes, not necessarily identities.
Summary / Conclusions

We will probably need a

• **constructive** approach to channels, credentials, policies…
 • When does the combination of two subprotocols (or channels) provide a solution to a (larger) problem?
 • What are the right logics for reasoning about channels, credentials, policies?

We do not have to solve this “abstract” problem in general, but

• in practical, even simple, applications for constraint devices
• where the **devices have to reason** about credentials / assertions / policies in order to **plug-and-play**
Trust that a system will protect my Privacy

Incentives?
- We need regulation, clear contracts, clear definitions, compliance tools

Perception?
- We need PETs that make privacy more visible and the implementation of privacy rules more transparent

Mass data collection increases the complexity of securing the system
- We need Authz/Consent systems supporting strong nyms
- We need privacy enhancing data sharing / data publishing